CHEM-1120G Course Map

Course Learning Objectives

- 1. Follow the scientific method, use the different systems of measurements, and perform conversions within the same system of measurements, convert between floating decimal numbers and scientific notation and identify significant figures (CO1).
- 2. Define what basic properties of materials are, how they are measured, what units are used and how to calculate properties such as density (CO2).
- 3. Calculate values using the gas laws and understand how these laws relate to everyday situations (CO3).
- 4. Differentiate between a physical and chemical property or change, an element and a compound, and distinguish a pure substance from a mixture (CO4).
- 5. Describe the basic structure of an atom and the 3 subatomic particles (CO5).
- 6. Understand the organization of the periodic table, be able to identify the name of an element from its symbol and vice versa, and understand the reactivity pattern of elements (CO6).
- 7. Explain the concept of nuclear reactions and predict outcomes (CO7).
- 8. Learn how a compound is formed, the differences between covalent and ionic compounds and construct the formulas and names of these compounds (CO8).
- 9. Relate the types of bonds in the compounds to the properties of the materials and how they interact and demonstrate how the bonding in water makes it unique (CO9).
- 10. Write chemical equations for reactions, balance the equations, and calculate quantities in reactions (CO10).
- 11. Clarify the different types of energy, and how energy is released or absorbed in a reaction (CO11).
- 12. Illustrate the acid-base concept and how it affects the human body (CO12).
- 13. Understand oxidation-reduction reactions and how they apply to energy production (CO13).
- 14. Learn the various organic chemicals, the functional groups that identify them (CO14).
- 15. The major food groups: carbohydrates, proteins, lipids and vitamins and minerals (CO15).
- 16. Solve critical thinking and application problems (CO16).
- 17. Write lab report (CO17).

Module	Topic	Learning Objectives	Instructional Materials	Assignments	Assessments
Getting Started	Getting Started	 Identify the main course topics found in the syllabus. Become familiar with the structure and organization of the course. Introduce yourself to your classmates. Identify DACC mental health and social services. Obtain your textbook in Brytewave. Download Lockdown Browser. Sign up for Labster. 	 Syllabus Introduction video Videos and documents BryteWave Course Materials link Lockdown Browser link Labster Access Instructions.pdf 	 Syllabus/Intro Quiz Introduce Yourself DACC Mental Health Resources quiz 	
Module 1	Chemistry in Our Lives	 Define the term chemistry (CO1) Identify substances as chemicals (CO1) Describe the activities that are part of the scientific method (CO1) Review math concepts used in chemistry (CO1) Write a number in scientific notation (CO1) 	Ch-1 ppt & Ch- 1 Video	Ch-1 discussion & Ch- 1 homework	Quiz 1 & Exam 1
Module 2	Chemistry and Measurements	 Write the names and abbreviations for the 	Ch-2 ppt & Ch-2 Video	Ch-2 discussion & Ch-2 homework	Quiz 1 & Exam 1

		 metric or SI units used in measurements (CO2). Identify a number as measured or exact; determine the number of significant figures in a measured number (CO1 & CO2). Adjust calculated answers to give the correct number of significant figures (CO2). Use the numerical values of prefixes to write a metric equality (CO2). Write a conversion factor for two units that describe the same quantity (CO2). Use conversion factors to change from one unit to another (CO2). Calculate the density of a substance (CO2) 			
Module 3	Matter and Energy	as pure substances or	Ch-3 ppt, Ch-3 Video, & Exam 1 Study Guide	 Ch-3 discussion, Ch-3 homework Matter and Phase Changes: Distill ethanol lab Simulation 	Quiz 1 & Exam 1

		temperature on another scale (CO4). Identify energy as potential or kinetic; convert between units of energy (CO11). Use the energy values to calculate the kilocalories (kcal) or kilojoules (kJ) for a food (CO15). Use specific heat to calculate heat loss or gain (CO11). Describe the changes of state between solids, liquids, and gases; calculate the energy released or absorbed (CO4).			
Module 4	Atoms and Elements	 Write correct symbol and name of elements (CO6). Use the periodic table to identify the group and the period of an element; identify the element as a metal, a nonmetal, or a metalloid (CO6). Describe the electrical charge and location in an atom for a proton, a neutron, and an electron (CO5). 	Ch-4 ppt & Ch- 4 Video	 Ch-4 discussion, Ch-4 homework, Atomic Structure (Principles): Atoms and Isotopes, Introduction to the Groups of the Periodic Table Lab Simulations 	Quiz 2 & Exam 2

Module 5	Nuclear Chemistry	 State the number of protons, neutrons, and electrons (CO5). Determine the number of protons, electrons, and neutrons in one or more of the isotopes of an element; identify the most abundant isotope of an element (CO5). Write the electron arrangement (CO6). Use the electron arrangement of elements to explain the trends in periodic properties (CO6). Describe alpha, beta, positron, and gamma radiation (CO7). 	Ch-5 ppt & Ch-5 Video	 Ch-5 discussion, Ch-5 homework, Gen Ed 	Quiz 2 & Exam 2
3	Chemistry	_	Video		

		 Describe the use of radioisotopes in medicine (CO16). Describe the processes of nuclear fission and fusion (CO7). Write a lab report on the Impact of Carbon Dioxide in Our Lives and Sustainable Solution (CO17). 			
Module 6	Ionic and Molecular Compounds	 Write the symbols for the simple ions of the representative elements (CO8). Write the correct formula for an ionic compound (CO8). Write the correct name of an ionic compound (CO8). Write the name and formula for an ionic compound containing a polyatomic ion (CO8). Write its correct name and formula of a molecular compound (CO8). Draw the Lewis structures for molecular compounds (CO9). 	Ch-6 ppt, Ch-6 Video, Exam 2 Study Guide	 Ch-6 discussion, Ch-6 homework, Ionic and Covalent Bonds Lab Simulation 	Quiz 2 & Exam 2

Module 7	Chemical Quantities and	•	Use electronegativity to determine the polarity of a bond (CO9). Predict the three-dimensional structure of a molecule (CO9). Classify molecules as polar or non-polar. Describe the intermolecular forces between ions, polar covalent molecules, and non-polar covalent molecules (CO9). Use Avogadro's number to determine the number of	Ch-7 ppt & Ch-7 Video	•	Ch-7 discussion, Ch-7 homework,	Quiz 3 & Exam 3
	Reactions	•	particles in a given number of moles (CO10). Calculate its molar mass (CO10). Use molar mass to convert between grams and moles (CO10). Write a balanced chemical equation; determine the number of atoms in the reactants and products (CO10). Identify a chemical reaction as a combination, decomposition, single replacement, double	Video	•	Intermolecular Forces: Rediscover the forces to save the world! Lab Simulation	

		replacement, or			
		combustion (CO10).			
Module 8	Gases	 Describe the kinetic molecular theory of gases and the units of measurement used for gases (CO3). Use the pressure–volume relationship (Boyle's law) to calculate the unknown pressure or volume (CO3). Use the temperature–volume relationship (Charles's law) to calculate the unknown temperature or volume (CO3). Use the temperature–pressure relationship (Gay-Lussac's law) to calculate the unknown temperature or pressure (CO3). Use the combined gas law 	Ch-8 ppt & Ch-8 Video	 Ch-8 discussion, Ch-8 homework, Ideal Gas Law: Apply to Save a Life Lab Simulation 	Quiz 3 & Exam 3
		to calculate the unknown pressure, volume, or temperature of a gas (CO3).			
Module	Solutions	Identify the solute and	Ch-9 ppt & Ch- 9	 Ch-9 discussion, 	• Quiz 4,
9		solvent in a solution;	Video	 Ch-9 homework, 	• Exam 4,
		describe the formation of a		 Osmosis and 	• Final
		solution (CO9).		Diffusion: Choose	Comprehensive
				the right solutions for the	Exam

Identify solutes as	intravenous drip	
electrolytes or	Lab Simulation	
nonelectrolytes (CO9).	Las Simulation	
Define solubility;		
distinguish between an		
unsaturated and a		
saturated solution.		
Identify an ionic compound		
as soluble or insoluble		
(CO9).		
Describe the electrical		
charge and location in an		
atom for a proton, a		
neutron, and an electron		
(CO5).		
Calculate the concentration		
of a solute in a solution; use		
concentration as a		
conversion factor to		
calculate the amount of		
solute or solution (CO10).		
Describe the dilution of a		
solution; calculate the		
unknown concentration or		
volume when a solution is		
diluted (CO10).		
Identify a mixture as a		
solution, a colloid, or a		
suspension. Describe how		
the number of particles in a		

Solution affects the osmotic pressure (CO16) Module 10 Acids and Bases and Equilibrium Equilibrium Page 20 Describe and name acids and bases (CO12). Identify conjugate acidbase pairs for Brønsted Lowry acids and bases (CO12). Write equations for the dissociation of strong and weak acids and bases (CO12). Use Le Châtelier's principle to determine the effect on equilibrium concentrations when reaction conditions change (CO12). Use the water dissociation expression to calculate the [H3O+] and [OH-] in an aqueous solution (CO12). Calculate [H3O+] and the pH of a solution (CO12). Write balanced equations for reactions of acids with metals, carbonates, and bases; calculate the metals, carbonates, and bases; calculate the metals, carbonates or bicarbonates, and bases; calculate the metals that the metals are placed to the metals of the metals and the placed of the metals and the metals are placed to the metals are placed to the metals and the metals are placed to the metals and the metals are placed to the metals are placed to the metals and the metals are placed to the metals are placed to the metals and the placed to the metals and the placed to the metals and the placed to the metals are placed to the metals and the placed to the metals and the placed to the metals and the placed to the metals are placed to the metals and the placed to the me				
Module 10 Acids and Bases and Equilibrium Bases and Equilibrium Acids and Bases (CO12). Identify conjugate acidbase pairs for Brønsted—Lowry acids and bases (CO12). Write equations for the dissociation of strong and weak acids and bases (CO12). Use Le Châtelier's principle to determine the effect on equilibrium concentrations when reaction conditions change (CO12). Use the water dissociation expression to calculate the [H3O+] and [OH-] in an aqueous solution (CO12). Calculate [H3O+] and the pH of a solution (CO12). Write balanced equations for reactions of acids with metals, carbonates or bicarbonates, and bases;				
and bases (CO12). Identify conjugate acid-base pairs for Brønsted-Lowry acids and bases (CO12). Write equations for the dissociation of strong and weak acids and bases (CO12). Use Le Châtelier's principle to determine the effect on equilibrium concentrations when reaction conditions change (CO12). Use the water dissociation expression to calculate the [H3O+] and [OH-] in an aqueous solution (CO12). Calculate [H3O+] and the pH of a solution (CO12). Write balanced equations for reactions of acids with metals, carbonates, and bases;				
volume of an acid from titration information	Bases and	 Describe and name acids and bases (CO12). Identify conjugate acidbase pairs for BrønstedLowry acids and bases (CO12). Write equations for the dissociation of strong and weak acids and bases (CO12). Use Le Châtelier's principle to determine the effect on equilibrium concentrations when reaction conditions change (CO12). Use the water dissociation expression to calculate the [H3O+] and [OH-] in an aqueous solution (CO12). Calculate [H3O+] and the pH of a solution (CO12). Write balanced equations for reactions of acids with metals, carbonates or bicarbonates, and bases; calculate the molarity or volume of an acid from 	 Ch-10 homework, Acids and Bases: Acidity and Alkalinity in Everyday Substances Lab 	Exam 4,Final Comprehensive

Module	Introduction to	 Describe the role of buffers in maintaining the pH of a solution (CO12). Identify properties 	• Ch-6 ppt,	Your Diet and Your	• Quiz 4,
11	Organic Chemistry: Hydrocarbons Learning Materials	characteristic of organic or inorganic compounds (CO14). Write the IUPAC names and draw the condensed structural and line-angle formulas for alkanes and cycloalkanes (CO14). Identify the properties of alkanes and write a balanced chemical equation for combustion (CO14). Write the IUPAC names or draw the condensed structural or line-angle formulas for alkenes and alkynes (CO14) Draw the condensed structural formulas and give the names for the cistrans isomers of alkenes (CO14)	 Ch-6 Video, Exam 2 Study Guide, Final Exam study Guide, Practice Final Exam, & Answer Key 	DNA Lab Simulation	• Exam 4, • Final Comprehensive Exam